AD=-A039 682 LEHIGH UNIV BETHLEHEM PA CENTER FOR THE APPLICATION-=ETC F/6 20/11
ON THE SPEED OF PROPAGATION OF WAVES IN A DEFORMED ELASTIC MATE==ETC (U)
APR 77 K N SAWYERSs) R S RIVLIN NO0014=76~-C=0235

UNCLASSIFIED CAM=100-27 NL




[y
]

)
.
[~ Y

Il

5

o 315 2:2
22
0

40

0

e

=

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOLUTION TEST CHART




G\
QD
o)
o
GO
o
T
(=]
<T

>

a.

(-

O

L o

= e

. Eéé:

23

ON THE SPEED OF PROPAGATION OF WAVES IN
A DEFORMED ELASTIC MATERIAL

by

K.N. SAWYERS and R,S, RIVLIN

TECHNICAL REPORT NO, CAM-100-27 April 1977

OFFICE OF NAVAL RESEARCH CONTRACT NO, N00014-76-C-0235

Center for the
Application of
Mathematics
(CAM)




On the Speed of Propagation of Waves
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ABSTRACT

The secular equation is obtained for small amplitude
waves propagated in an arbitrary direction in a body of in-
compressible isotropic elastic material subjected to a pure
homogeneous deformation. Conditions are obtained that the

wave speeds be real.
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1. Introduction

In a previous paper [1], we have considered the propagation
of plane sinusoidal waves of infinitesimal amplitude in an in-
compressible isotropic elastic material which is subjected to
an initial static pure homogeneous deformation. There the
secular equation was obtained for waves propagated in an arbi-
trary direction in a principal plane of the pure homogeneous
deformation. The requirement that the wave speeds be real for
all such directions of propagation led to certain necessary and
sufficient conditions on the form of the strain-energy function
w . These conditions are expressed by equations (4.6) below
with the notation of (3.13). The conditions (4.6)1 were pre-
viously given by Baker and Ericksen [2], while the conditions
(4.6)2 were not, we believe, previously known.

In another paper [3], we conjectured that more stringent
conditions on w than those in (4.6) might arise from the
requirement that the wave speeds be real for arbitrary direc-
tion of propagation, not necessarily in a principal plane of
the static pure homogeneous deformation. It is argued here
(85) that this is certainly not true in the case when two of
the principal extension ratios are equal.

In the present paper we obtain the secular equation for
waves propagated in an arbitrary direction in the deformed
material. From it we easily obtain necessary and sufficient
conditions that the wave speeds be real. However, these con-
ditions involve not only the principal extension ratios and

the derivatives of w with respect to the strain invariants,




but also the direction of wave propagation. We have not, so
far, been able to obtain the necessary and sufficient con-
ditions in a form which is independent of this direction for
arbitrary strain-energy functions and arbitrary values of the
principal extension ratios associated with the pure homogeneous
deformation.

However, in §6, it is shown that for strain-energy functions
of the Mooney-Rivlin type, the Baker-Ericksen conditions provide
necessary and sufficient conditions for the velocities of waves
propagated in an arbitrary direction to be real. Essentially
the same result was previously obtained by Ericksen [4] in his
study of the propagation of a second-order discontinuity in an
incompressible isotropic elastic material.

Finally, in §7 it is shown that if w depends on only one

of the two strain invariants i and i defined in (2.4),

i | =t
then the restrictions expressed by equations (4.6) are necessary

and sufficient that the wave speeds be real for arbitrary direc-

tion of propagation.
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2. Basic equations

We consider a body of incompressible isotropic elastic
material subjected to a pure homogeneous deformation with exten-
sion ratios Al,A2,A3 and principal directions parallel to the
axes of a rectangular cartesian coordinate system Xx . In this
deformation, a particle which initially has vector position .

with respect to the origin of the system x moves to vector

position X , where

(2.1)

and

X =01 . (2:2)

We now assume that a plane sinusoidal wave of small ampli-
tude propagates in the deformed material. With the usual com-
plex notation, the vector displacement u may be written in

the form

u = U exprfw(sg-X-t)] , (2.3)

where U 1is a constant vector, w 1is the angular frequency

~

of the wave, S 1is its complex slowness and & 1is a unit vec-

~

tor in the direction of propagation.
For an incompressible isotropic elastic material, subjected
to a deformation in which a particle initially at £ moves to

x at time t , the strain-energy w , measured per unit

~

volume, is expressible as a function of i and i, , thus

1




i

W= w(iLiy) (2.4)

where il and 1, are defined by

i BN S %[(tr c)2 - tr c2]

1 ¢ 5 < ~ (2.5)

(o8
I

{| is the Fingerstrain matrix, referred to the

system x , defined by

€43 = %5 0%y o (2.6)

x; and £, are the components of x and £ in the system x

and ,a denotes differentiation with respect to £, - Corres-
pondingly, the Cauchy stress matrix o = | oin , referred to
the system x , 1is given by

5

o = 2[(w;+i,w,)c - w,c™] - pé , (2.7)

~ D~ ~

where p is an arbitrary hydrostatic pressure, §é 1s the unit

matrix, and the notation

w, = )w/ﬁi] y W, = 0w/di, (2.8)

is used. Since the material considered is incompressible, the

deformation gradients Xi .o must satisfy the condition
9 U

det‘xi 1 (2.9)

nll

We now assume that




X = X u AE u (2.10)

where u 1is given by (2.3) and is assumed to be sufficiently

small so that we can linearize in it. We then obtain [1] from

(2.7) and the equations of motion, the following equation

2 - =

5700357655085 = oU; , (2.11)
where Q 1is an arbitrary constant and Qij is defined by

Qij i Riijk ’ (2.12)

r *
with

- 2 2 2 2
Rapc = 2{IW *+ (Ty-A3-AR)W,] (jRp8p0 + Ap2p6, )
2s 2 2 2
* ARG IW,* W21 AR, (2.13)
2 2
* A (T AW 16,51
In (2.13) the notation
By i1[9=0 P T
oW Iw
e N, = (2.14)
% 5?1 u=0 j . §Ié'9=0 y
32
W = L s etc
11 55
u=(

is used.

* The summation convention is not applied to upper case Latin
subscripts.
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In a similar manner, we obtain from (2.9), (2.10) and
(2.3),

i%; : (2.15)

In the previous paper [1], we used (2.11) and {2.15) to

obtain the secular equation for S in the particular case when

the wave propagates in a principal plane of the pure homogeneous

deformation, i.e. when either ll, 22, or £3 is zero. In the

next section, we obtain the secular equation without this

restriction.




1
3

5 The secular equation

We can eliminate Q from equation (2.11) by multiplying

it throughout by Braa where €mnj 1S the alternating symbol.

We then obtain

E:mnioQijlnij - 8mniani 2 (3.1)
where we have introduced the notation
@ = 5%, (3.2)
Introducing (2.12) into (3.1), we obtain
Rl = 0 (3.3)
where
Rok = Smni (Rise%y © S04 - (3.4)

We note that the three equations represented by (3.3) are not

linearly independent, since Rmkpm is identically zero.

Taking m = 1 and 2 in (3.3), we have two equations
Ryl = 0, Ryl =0 . (3.5)

The necessary and sufficient condition for (3.5) and (2.15)

to yield a non-trivial solution for Uy is




AT

- R 2o ¥ Siiadd i,

e

€i5xR1jRots =

With (3.4) this can be rewritten a

where

i eijkelmneersRnijsqk
B Eijkelmnezrs(Rnpjzp6
¥ L.L

T fijk®imjCorktitmir

After some algebraic manipulation,

o = 23€ijkzigpzq(£lR2ij3qk * A,
B = 232p(Rkpk - lkerkpr) .
Tt
Introducing (3.9) into (3.7),
2,40,

ac®~ Bo + 1

® If 23 = (0, we take m = 2 and

obtain another pair of equations
a similar procedure to that used
(3.12).

g . (3.6)
s

) (3.7)

botatntrti

b qukzqénj)zmzrzi , (3.8)

we obtain

RipjRigk * *3RipjRoqi) >

(3.9)

*
we obtain, provided that

(3.10)

]
o
-

Sy 6 3 and 1, in (3.4} to

instead of (3.5). Then, by
above, we arrive at (3.10) with




—

— U e
where

g R

Q 1 2PBR3QC ¥ AR

o = £ £ oL R
,%,C, ABC™A™P 3PB 1QC
P,Q

*

R

3Ry ppRoqc)

B = ] 2,(R - 2,8.R,.)
ALB,C B'"ABA A"C ABC

Now, introducing (2.13) into (3.11), we obtain

2o 2,2
a = 4(ASR +..){(A121K2K3 - S

222 2 252
+ Wl[L223(X?-X3) Ml .13

Ly 2pls2 2 252
+ AW, [ASASRORS(AS-AD)PM, +..]

22 B S BPed 0B SAD P P2 el
= 5 s EiCT )¢ %
16£122L3( 2 X3J (\3 'l) (Al AD) (“12 wllw22) 2 (3.12)

o 2n 2 202
B = 2{[K1(A gl x3z3) +.. ]

2 il 2
+ [(5-A5)7ee3M, +. 1},
where the dots denote terms obtained from those shown by cyclic

permutation of the subscripts 1,2,3 on the A's, &'s, K's and

M's, and K, and MA are defined by

=
1

\ 2 ' 4 h v
2(W11+ ZAAWl2+ XAW32)




From (3.12) it follows, after somewhat lengtny algebraic

manipulation, that

2 e il R B
B -4a = 4w2{[xlal(x2 x3) - BEPOE

s a0 9. .5 o .0 08
+ 2[x2x32223(xl-x2)(xl A3) * .. 1}
2

2 L 2.0,0 I N
+ 8W2{[(k2—k3) QERBMl{Ag(Kl K3)( 1 2)

B8 1Py pg2.42
+ XB(AI-Ag)(Ql+23)}] ¥ 58

5 9 p o 0 2
+ 4{[(x2-x3) Q213M1 + ..
0 0 D P D02 12:2.32 323242 _
* 16212223(A2'A3) (A3'A1) (Al_k2) (W wllw22)} (3.14)

It is of interest to note that 82- 40, is independent of Wl.

The necessary and sufficient conditions for the secular
equation (3.10) to yield two positive roots for o , i.e. for

2
S, are

PP Sl e T (3.15)

The remainder of this paper is concerned with the conditions

which must be satisfied by w so that (3.15) shall be satisfied.
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4. Propagation in a principal plane

If the direction of propagation of the wave lies in the

principal plane normal to the 3-direction, so that & = (21,22,0),

then equations (3.12) can be written as

o D S DD
= 4(15e° PN AT e o
9 Ay L 1%1740%5)

K 2Py
0
y )\72?

-

2. 2 2 2
+ 27RO +A) TR+ (A=A ) MTT

4.1
. T W 12)2
B o= 21A, 4K, + A 0K gyt fe%e
+ 232;(A1+XD)L[K3+\\l-xg)‘m3]}
and equation (3.14) can be written as
2 s AW 2222(02-22) + 22322232
B™-da = 4{W,[A; 2, (A3-2,) obo(A3-2y)
cBLB LD B D 2
+ 229 -AS) W .
RIS (AT-A5) ML) (4.2)

We note that the weak inequality (3.15), is automatically

3
satisfied.

Again, if the direction of propagation of the wave is a
principal direction for the pure homogeneous deformation, say

the direction (1,0,0), then equations (4.1) become
o = MK K, , B = 2A7(K*K,) . (4.3)

Analogous expressions for « and 8 may be written in the
cases when the direction of propagation is (0,1,0) and (0,0,1)
and it is then seen that necessary conditions for o > 0 and

8 > @ are

Ky > 0 (A = 1,2,5) . (4.4)
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These conditions are known as the Baker-Ericksen conditions [2].
Returning to (4.1)1, we see that provided (4.4) is satis-

fied, the necessary and sufficient condition for a > 0 is
2
K3+ (Al-Az) M3> (03 (4.5)

If (4.4) and (4.5) are satisfied then, from (4.1)2, B> 0
Analogous arguments based on the expressions for o and B

obtained by taking ¢ = (0,%,,%

L 3) and (11,0,23) in (3.12),

lead to the conclusion that the necessary and sufficient conditions
for (3.15) to be satisfied for all & parallel to a principal

plane are

2
Ky > 0 and (Ag-A) My + K, >0, (4.6)

where A,B,C 1is a cyclic permutation of 1,2,3. This result was

previously obtained by a slightly different path in [1].
It will now be shown that if the conditions (4.6) are satis-

fied by w, then B8 > 0 for all & . To see this we rewrite

sty ~

(3.12), in the form

1z B B
Lol [Kl{(xelz A3Q3)

£y zi(xgz§+xgzg)}]
$ 30 uas Br a0 ars e s (4.7)

where

}]

- - LRl
b= [(A,*a) 05031 (,-23) "M+ Ky

¥ f vee F % ] vl
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5. Two principal extension ratios equal

In this section we will show that if two of the principal
extension ratios are equal, then the conditions (4.6) imply that

the conditions (3.15) are satisfied for arbitrary &

-~

Let

Ny Ko ®K L may . (5.1)
Then, from (2.2)

L Tl (5.2)

13
(5.3}
(3-13%M + A%k > 0 |
where, from (3.13),
Koo Wt AT, . Ko ke Bow e a2y
ek 1 g2 ? 2 3 E >
(5.4)

y 2 4
M= M= M= 20W  +20°W,, + A'W,,)

With (5.4), we obtain from (3.12)




= 15 =
" =127 ,2¢ B ) ;.3 ;.2 .2 20
a = AATTEATK ¢ AT (D) K HAT AT (R5+03) - 251°K

+ 030% 20200312« akkgy

(5.5)
8 = 2{ (32 [ (K +K)A? + Mk’a(xé—l)pii]
+ ZKATMBY
It follows from (5.4) and (5.5) that
B%-4a = 4\'1’1—'(&@1)3(_z;+9,§)2[,x6h‘2 + (x6-1)e§M]2 ] (5.6)

It is evident that if the conditions (5.3) are satisfied, then

the expressions for «,8 and B8°-4a given in (5.5) and (5.6)

satisfy (35.15).

This result, that if two of the principal extension ratios
are equal, the conditions (4.6) imply (3.15) for arbitrary % ’
is, of course, by no means unexpected. For the conditions
(4.6) are the conditions that (3.15) be valid for all g
parallel to a principal plane. TIf two of the extension ratios
are equal then any direction is parallel to a principal plane.

It should be noted that even if we restrict ourselves to
underlying pure homogeneous deformations for which two of the
principal extension ratios are equal, we cannot ensure that
the velocities of wave propagation shall be real for all propa-
gation directions by imposing restrictions on w beyond those
implied by (5.3). For, we can choose a direction of propagation

N

for which 9; = 1 and obtain from (5.5),, B = A4KA"" , so




that the conditions 8 > 0 and K > 0 are identical. Again,
by choosing ll =0, (5.5)1 becomes o = 4thlK , which, with
K > 0 and the condition a > 0 , yields Kl >0 . Finally,
it is possible to choose a direction of propagation for which
22 = x3(z§+z§) , and it follows from (5.5); , with X >0
and. K > O , that a > 0 only 1f (5.3)3 is satisfied.

In a previous paper [3], Sawyers and Rivlin conjectured
that the conditions (4.2), which are the necessary and sufficient
conditions for the wave velocities to be real for directions of
propagation parallel to a principal plane, might be replaced by
the stronger conditions

Ky >0, O+ )M + Ko >0, (5.7)

where A,B,C is a cyclic permutation of 1,2,3, if we wish to
ensure that the wave velocities be real for arbitrary directions
of propagation. That this is not true, in general, is evidenced
by the above discussion, and also from the results given in

§7 below.

@ -
Wy Senaa el e By

Y O R B
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6. The Mooney-Rivlin material

We now consider a material for which the strain-energy

function is given by
w = Cl(il-S) + C2(i2-3) (6.

where Cl and C2 are constants. Then,

1)

W=C , W=C,, W, =HW,=W_=0. (6.2)
It follows from (3.13) that
- 2 -
K, = €, +2C, , M, =0. (6.3)
Then, from (3.12),
# 2,2 22
a = 4(ATRT+ .. ){A121K2K3+ s
(6.4)
- 2,2 2,2
B = 2[K (AJf5+ A383) + ..]

We shall assume that the underlying pure homogeneous de-

formation to which the body is subjected is such that the three

*
principal extension ratios are all different . We may assume,

without loss of generality, that xl> x2> A, . It follows from

3
(6.4) and (6.3)1 that

* If this is not the case, the analysis of the preceding section
is applicable.
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2 . o ar21r:2;2.2 40 2ol 3 Bx 30,00 D572
B -4a 4C2{[A121(A2 A3) * A5 (A5 13) A3z3(xl A3)]

2,2 2 2 a9 o8 2 42
+ 4A2A32223(A1-A2)(xl-x3)} . (6.5)

From (6.4) it follows that the conditions a > 0 , B > 0
are satisfied for all L if and only if KA >0 (A=1,2,3)
It is, of course, evident from (6.5) that the condition

8°-4a > 0 1is automatically satisfied.
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7, Two additional special cases
In this section we shall discuss the cases when w is a
function of i, only or of 12 only.
If w 1is independent of 1i_,, so that
w= (i) , (7.1)
then equations (3.13) become
Ky = £, M, = 2£7 (A-1,2,3) , (7.2)
where the prime denotes differentiation with respect to il'
| The conditions (4.6) then become
| e b o Mgyt y £ 4 (7.3)
! where AB = 23, 31, 12.
|
With (7.1) and (7.2), we obtain from (3.12)1 and (3.14)
: o = 4QJT+ .. METL(ATRTE L. O
* 2D RER%s L 1, (7.4)
8%-40 = 16105-22)% 1505+ .. 12(£")°
W Y .
i It is evident that g7 -4a > 0 for all forms of £
%}
i We shall now show that o > 0 for all functions f which

satisfy (7.3). It is, of course, evident that the conditions
(7.3) are satisfied for all functions f for which f'> 0 and
f"Z 0 and, for all such functions, o > 0 . We accordingly

consider only functions f for which f'> 0 and £'< 0




—
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*
Let us assume that Al> A2> A Then, the condition

3

20 -%.) 2"

3y + f' >0 (7.5)

implies the remaining two conditions (7.3)2. We may rewrite

(7.5) as
2(x1-x3)2f" +f'=¢e, e>0. (7.6)

Then, with (7.6)1, equation (7.4)1 becomes

2.2
4(AsET *..)

A 3 (PP 5.0
o ” 5 £'{FE" « eLAS-AY %82 . 1), (7.7)
17}3)
where
P Pt g P i g BB 2.0
F (, AB) A1+ -.) [ (A5 AB) L3 4.0 1. (7.8)
: 2 2 42
We now show that F > 0 . Since L= 1-27-%2, we can re-

write (7.8) as

2
1

e 2 2 e 2 2 2
F = A30023)% 010 -2 )% 0250

- O5ADI0 A% 225148
+ [(xi-xg)zf- (Ag-xg)zg]g ) (7.9)

2

Regarding F as a function of 21 and 2° , we see that if

3
F has a minimum, it occurs when aF/a(zf) = BF/B(Rg) = 0

i.e. when

* The case when two of the A's are equal is covered in §5.
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2 2

sl aE. . SAS g e .
(Aq-25)8- O-23)05= 310y -23)

- 05,
(7.10)
02222 02438 Fi0,

R
3) (A3-23)]

Since Al > x3 » equations (7.10) evidently yield no solution

2 . o 3,
for 11 and Qg and, accordingly, F cannot assume a minimum

value.

We find, from (7.9) and the fact that & is a unit vector,

~

that
2 2 22
F‘11=O (Al-ABJ (AQQZ‘ABLB)
2 2.2
+ (A2+X3) (AI-XE)(A1+X2-ZA3)22£3 e g
v - ) 20y g2 %
i23=o By Agd U Ry Ao k) (7.11)
U T PR U T B Y R
WAy Phod WA At lady sk A )b ke > 0 %
- A 3Bas a8y BB
Fllq= =y A3) (A, 2] X3L3) >0
- : . 3 2 S
We note that F§;?=O = 0 if and only if A2y-A R = 0
The domain in the Ri,lg plane for which % 1is a unit vector
is the triangular domain bounded by the lines & = 0, zg =0
and 2§+ lg =1 . It follows from (7.11) that F > 0 on the

boundary of this domain. If F < 0 at any point in the
interior of the domain, it follows (see, for example, [5])

that it must assume a minimum value in the interior of the

domain. However, we have seen that it does not assume such a
minimum. Accordingly, F > 0 at all points of the closed
domain, i.e. for all & . It follows from (7.7) and (7.6) that
o« >0 for all ¢ if w has the form (7.1) and the conditions

(4.6) are satisfied.
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We now turn to the case when w is independent of

write
w=g(i,)
Then, the conditions (4.6) become

1]

g >0 ’ ?--(>‘A'>‘B)2 Aé g"+ g'> 0 ’

where the prime now denotes differentiation with respect to

12 . With (7.12) and (3.13), we obtain from (3.12)

Q
1]

1g' (8" 0y 28"05) B = 4(g"0,* 8"0))

-ko

B

where

_1&?_2222
by = A (A5-A5)°2505 + ..,

o Ay 88 a8 .2

¥y ™ z{xlzl(A2+A3) ¥ ww & on
e 122 3Be8,2,2

05 = AJ(A5-A3)78585 + ..,

L oms
e,

We may rewrite (7.14)2 in the form

-
w

2 "
B -4a = 16{[¢ g + (¢2- )g'l

<
[

*(§ 708,05 8100 0D)

After some lengthy calculation, we obtain

2 e

16{6% (g")°+ 2(6,0,-6)8'8" + (63-6,) (g%},

i, and

(7.12)

(7.13)

(7.14)

{7.15)

(7.16)

2 o i2aRa AR s B Ry 2 BB B L B0 D
039593 #1993 = RpfoRgg-ag) Ogmaid g =da)” 2 0,
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Thus, the condition 8°- 4a > 0 is satisfied for all g

It is evident that the conditions (7.13) are satisfied for

all g for which g' >0 and g" = 0 and, o > @0 Ffer all

such g . We accordingly consider only functions g for which

§‘>0 and g" < 0 . Let us assume A_ > A_ > A_ . Then, since,

1 2 3
with (2.2),

2 o 2 o 2 o 2 2
A, (0 -25)° > AT, S e e O R £ T L
it follows that the condition
2 _ 2 " '
20,0,-25)% g" v g' > 0,

implies the remaining two conditions (7.13)2.

The condition (7.19) may be rewritten as
” 2 s 2 " e
AAE(Al A3) gt g =& ., >0

From (7.20)1 and (7.14)1, we obtain

4 '
a= ——& _ (Gg' + e4.)
2 4 2 SEC T
AiAg =Aad
where
= 2 - 2 -
g A2(Al x3) ¢y ¢3
A 2 2 S :
Writing $y * 3 = % - 23 in the expression (7.15) for ¢3
and ¢, and regarding G as a function of Qi and Rg

it follows that if G has a minimum, it occurs when

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)
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PP SN S Ry ST U R
205 (A1-A5)80 - (AS+AD) (A5-A5)ed

- S S
= BAS-22) - Ao (A -A.)" ,

{(7.25)
Pl i 2 S B 0 Lo O
2Ry (o =R2 )b~ DASFASY (AT ) 45
ei - 0 L e CETENEE SRR
U i B e ¢ T T
i.e. when
- SEME e AP
(1 -A3) (AT-A0)8] DSOT-%) * 20,3
(7.24)

2

I PO
iy talitha iy

-ISIC S T S
Jos » ATGAC-AZY < 2%,

Since A, > A, > A, , the value of 2% given by (7.24) is

negative and accordingly, G does not possess a minimum value

for real values of %

We find, from (7.22) and (7.15) and the fact that g is
a unit vector, that

= g 2 2 2. 2.8

G|21=o = Ay hg) Ao (Aot Agha)
AL A ) A *A )2 (2A A -A A -2 A )2222 5 ¢
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lz3=o 173 oAy Ry-2580) (7.25)

2 2 N 2.0
* A A3)(Al+\2) (Al\2+A1\3 23 A5)8005 > 0,

We note that G’l o = 0 if and only if A, 27 = A 22 . H

2

= el 2 o 2240
G!£2=0 Ag (A, =25 (A 27-2,22)% > 0

/-
2 i | S

By an argument similar to that used in showing that F > 0 ,

it follows that G > 0 for all real & and the value G = 0




w 25 =

is taken only when & is perpendicular to the 2-direction.
It then follows from (7.21) and (7.15), with (7.20), that

o >0 for all & if w has the form (7.12) and the conditions

(4.6) are satisfied.
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